4 research outputs found

    Course-based Science Research Promotes Learning in Diverse Students at Diverse Institutions

    Full text link
    Course-based research experiences (CREs) are powerful strategies for spreading learning and improving persistence for all students, both science majors and nonscience majors. Here we address the crucial components of CREs (context, discovery, ownership, iteration, communication, presentation) found across a broad range of such courses at a variety of academic institutions. We also address how the design of a CRE should vary according to the background of student participants; no single CRE format is perfect. We provide a framework for implementing CREs across multiple institutional types and several disciplines throughout the typical four years of undergraduate work, designed to a variety of student backgrounds. Our experiences implementing CREs also provide guidance on overcoming barriers to their implementation

    Sperm superoxide dismutase is associated with bull fertility

    No full text
    Decreasing mammalian fertility and sperm quality have created an urgent need to find effective methods to distinguish non-viable from viable fertilising spermatozoa. The aims of the present study were to evaluate expression levels of β-tubulin 2C (TUBB2C), heat shock protein 10 (HSP10), hexokinase 1 (HXK1) and superoxide dismutase 1 (SOD1) in spermatozoa from Holstein bulls with varying fertility using western blotting and to analyse the biological networks of these key sperm proteins using a bioinformatics software (Metacore; Thomson-Reuters, Philadelphia, PA, USA). The rationales behind this study were that the sperm proteins play crucial roles in fertilisation and early embryonic development in mammals and ascertaining the biological networks of the proteins helps us better understand sperm physiology and early mammalian development. The results showed that expression of SOD1 was higher in spermatozoa from high fertility bulls (P\u3c0.05) and that SOD1 is the best protein to diagnose bulls based on the fertility index (P\u3c0.05). Using Metacore analysis, we identified an SOD1 network with pathways and linkages with other relevant molecules. We concluded that SOD1 sperm expression is associated with in vivo bull fertility. The findings are important because they illuminate molecular and cellular determinants of sperm viability and the identified protein markers can be used to determine bull fertility

    Sperm superoxide dismutase is associated with bull fertility

    No full text
    Decreasing mammalian fertility and sperm quality have created an urgent need to find effective methods to distinguish non-viable from viable fertilising spermatozoa. The aims of the present study were to evaluate expression levels of β-tubulin 2C (TUBB2C), heat shock protein 10 (HSP10), hexokinase 1 (HXK1) and superoxide dismutase 1 (SOD1) in spermatozoa from Holstein bulls with varying fertility using western blotting and to analyse the biological networks of these key sperm proteins using a bioinformatics software (Metacore; Thomson-Reuters, Philadelphia, PA, USA). The rationales behind this study were that the sperm proteins play crucial roles in fertilisation and early embryonic development in mammals and ascertaining the biological networks of the proteins helps us better understand sperm physiology and early mammalian development. The results showed that expression of SOD1 was higher in spermatozoa from high fertility bulls (P\u3c0.05) and that SOD1 is the best protein to diagnose bulls based on the fertility index (P\u3c0.05). Using Metacore analysis, we identified an SOD1 network with pathways and linkages with other relevant molecules. We concluded that SOD1 sperm expression is associated with in vivo bull fertility. The findings are important because they illuminate molecular and cellular determinants of sperm viability and the identified protein markers can be used to determine bull fertility
    corecore